优信彩票|手机app下载

On Dirac cohomology of complex classical Lie groups

發布者:文明辦作者:發布時間:2019-07-03瀏覽次數:1292


主講人:Daniel Kayue Wong,香港中文大學(深圳)助理教授


時間:2019年8月1日10:10


地點:徐匯校區3號樓301


舉辦單位:數理學院


內容介紹:Let $G$ be a real reductive Lie group, and $\hat{G}^d$ be the collection of  irreducible unitary representations with nonzero Dirac cohomology. In the  special case when $G$ is a complex group (treated as a real group), Barbasch and  Pandzic conjectured $\hat{G}^d$ can be obtained from parabolic induction on some  unipotent representations. On the other hand, Dong reduced the study of  $\hat{G}^d$ to a finite set of representations called scattered representations.  In this talk, we will see how these two approaches of $\hat{G}^d$ can be  reconciled for complex classical Lie groups, which in turn will verify a couple  of conjectures of Barbasch-Pandzic, and identify the scattered representations  computed by Dong using the atlas program. This is a joint work with Dan Barbasch  and Chao-ping Dong.

                                        优信彩票|手机app下载 香港彩票|官网登录 9彩彩票|手机app下载 二八杠游戏平台 3G彩票|官网登录 鸿鑫彩票|手机app下载 香港彩票|官网登录 明发彩票|官网登录 博悦彩票|官网登录 8号彩票|手机app下载 彩票99|手机app下载 六福彩票|手机app下载 广东36选7开奖结果 重庆快乐十分开奖结果 星彩网|官网登录 河北福彩排列7走势图